A production planning model for an unreliable production facility: Case of finite horizon and single demand

نویسنده

  • Mohsen Elhafsi
چکیده

We study a two-level inventory system that is subject to failures and repairs. The objective is to minimize the expected total cost so as to determine the production plan for a single quantity demand. The expected total cost consists of the inventory carrying costs for finished and unfinished items, the backlog cost for not meeting the demand due-date, and the planning costs associated with the ordering schedule of unfinished items. The production plan consists of the optimal number of lot sizes, the optimal size for each lot, the optimal ordering schedule for unfinished items, and the optimal due-date to be assigned to the demand. To gain insight, we solve special cases and use their results to device an efficient solution approach for the main model. The models are solved to optimality and the solution is either obtained in closed form or through very efficient algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive aggregate production planning with fuzzy goal programming approach

Aggregate production planning (APP) determines the optimal production plan for the medium term planning horizon. The purpose of the APP is effective utilization of existing capacities through facing the fluctuations in demand. Recently, fuzzy approaches have been applied for APP focusing on vague nature of cost parameters. Considering the importance of coping with customer demand in different p...

متن کامل

Solving a generalized aggregate production planning problem by genetic algorithms

This paper presents a genetic algorithm (GA) for solving a generalized model of single-item resource-constrained aggregate production planning (APP) with linear cost functions. APP belongs to a class of pro-duction planning problems in which there is a single production variable representing the total production of all products. We linearize a linear mixed-integer model of APP subject to hiring...

متن کامل

A Hierarchical Production Planning and Finite Scheduling Framework for Part Families in Flexible Job-shop (with a case study)

Tendency to optimization in last decades has resulted in creating multi-product manufacturing systems. Production planning in such systems is difficult, because optimal production volume that is calculated must be consistent with limitation of production system. Hence, integration has been proposed to decide about these problems concurrently. Main problem in integration is how we can relate pro...

متن کامل

A general model for production-transportation planning in steel supply chain

This paper is focused on the tactical design of steel supply chain (SSC). A general mathematical model is proposed to integrate production and transportation planning in multi-commodity SSC. The main purpose is to prepare a countrywide production and distribution plan in an SSC with three layers consisting of iron ore mines as suppliers, steel companies as producers, and subsidiary steel compan...

متن کامل

A production-inventory model with permissible delay incorporating learning effect in random planning horizon using genetic algorithm

This paper presents a production-inventory model for deteriorating items with stock-dependent demand under inflation in a random planning horizon. The supplier offers the retailer fully permissible delay in payment. It is assumed that the time horizon of the business period is random in nature and follows exponential distribution with a known mean. Here learning effect is also introduced for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2002